IRMA YOLANDA POLANCO GUZMÁN, JORGE FERNANDO BETANCOURT USCÁTEGUI
U$ 21,02 19,84 €
U$ 21,02 19,84 €
INTRODUCCIÓN
CAPÍTULO 1. PRÁCTICAS CON POWER BI DESKTOP
1.1 GENERALIDADES DE POWER BI
1.1.1 Usos de Power BI
1.1.2 Conexión a datos
1.1.3 Creación de un modelo de datos
1.1.4 Creación de objetos visuales
1.1.5 Creación de informes
1.1.6 Compartir y publicar informes
1.2 PRÁCTICA ANÁLISIS DE DATOS FINANCIEROS
1.2.1 Carga de datos
1.2.2 Crear el modelo de datos
1.2.3 Crear el informe
1.2.4 Práctica análisis de datos por año
1.3 PRÁCTICA ANÁLISIS DE UNA PÁGINA WEB
1.3.1 Conexión a un origen de datos
1.3.2 Limpieza de datos mediante el editor de Power Query
1.3.3 Importación de la consulta en la vista de informe
1.3.4 Creación de una visualización - Dashboard
1.4 PRÁCTICA COMBINAR DATOS CON POWER BI
1.4.1 Conectarse a un origen de datos
1.4.2 Crear el modelo de datos
1.4.3 Combinar datos
1.4.4 Elaboración del Dashboard
1.5 PRÁCTICA CREACIÓN DE MEDIDAS PROPIAS (EMPRESA CONTOSO)
1.5.1 Lectura y carga de archivo
1.5.2 Elaboración del Dashboard
1.5.3 Creación de medidas propias
1.6 PRÁCTICA ANÁLISIS DE DATOS DE UNA SUPERTIENDA
1.6.1 Conexión y carga del archivo de datos
1.6.2 Creación del Dashboard General
1.6.3 Creación del Dashboard Caribe
1.6.4 Creación del Dashboard Centro
1.6.5 Creación del Dashboard Norte
1.6.6 Creación del Dashboard Sur
1.6.7 Análisis de datos de la muestra_supertienda
CAPÍTULO 2. PRÁCTICAS CON R-RSTUDIO
2.1 GENERALIDADES DEL LENGUAJE R
2.2 ENTORNO DE DESARROLLO INTEGRADO (IDE) RSTUDIO
2.2.1 Características o generalidades de RStudio
2.2.2 Ventanas del entorno IDE de RStudio
2.3 INTRODUCCIÓN AL LENGUAJE R
2.3.1 Tipos de datos en R
2.3.2 Carga de datos
2.4 PRÁCTICA: ESTADÍSTICA DESCRIPTIVA DE UNA VARIABLE
CUANTITATIVA CONTINUA
2.4.1 Origen de los datos
2.4.2 Medidas de tendencia central
2.4.3 Tabla de frecuencia e histograma
2.4.4 Medidas de variabilidad
2.4.5 Medidas de posición
2.4.6 Normalidad de los datos
2.4.7 Estadística descriptiva de la variable dist
2.4.8 Estadística descriptiva de la variable accel
2.5 PRÁCTICA REGRESIÓN LINEAL
2.5.1 Correlación Temperatura vs Nivel de Ozono
2.5.2 Correlación Nivel de Ozono vs Radiación Solar
2.5.3 Correlación Temperatura vs Nivel de Radiación Solar
2.5.4 Correlación Temperatura vs Velocidad de Viento
2.5.5 Correlación entre múltiples variables
2.5.6 Correlación Nivel de Ozono vs Velocidad del Viento
2.5.7 Correlación Nivel de Radiación Solar vs Velocidad del Viento
2.6 PRÁCTICA ÁRBOLES DE DECISIÓN
2.6.1 Característica de los árboles de decisión
2.6.2 Requerimientos
2.6.3 Importar los datos
2.6.4 Generar un set de entrenamiento y prueba
2.6.5 Elección del modelo
2.6.6 Sistematizando el modelo
2.6.7 Conclusión
2.6.8 Ejercicio: Creación y análisis de un árbol de decisión
2.7 PRÁCTICA MINERÍA DE TEXTO
2.7.1 Instalación de los paquetes requeridos
2.7.2 Carga de datos
2.7.3 Ejercicio: Análisis del texto: Aplicaciones de la inteligencia artificial
CAPÍTULO 3. PRÁCTICAS CON KNIME
3.1 DESCARGAR E INSTALAR KNIME ANALYTICS
3.1.1 Instalar Knime Analytics
3.1.2 Actualizar datos
3.2 INTRODUCCIÓN A KNIME ANALYTICS
3.2.1 Elementos de la ventana de inicio de Knime
3.2.2 Nodos y flujo de trabajo
3.2.3 Ventajas y desventajas de Knime
3.2.4 Crear un proyecto Knime
3.3 PRÁCTICA CIENCIA DE DATOS
3.3.1 Concepto y fases
3.3.2 Crear un flujo de trabajo Workflow
3.3.3 Síntesis del análisis de datos del sistema CRM
3.4 PRÁCTICA MODELO DE ENTRENAMIENTO DE CLASIFICACIÓN
DE DATOS
3.4.1 Lectura de datos
3.4.2 Tratamiento y limpieza de los datos
3.4.3 Propiedades gráficas
3.4.4 Estadísticas descriptivas
3.4.5 Partición de datos
3.4.6 Entrenamiento del modelo de decisión
3.4.7 Tabla interactiva
3.4.8 Aplicar el modelo
3.4.9 Gráfico número de horas vs edad
3.4.10 Puntuar
3.4.11 Flujo de trabajo
3.4.12 Práctica de resultados del modelo
3.5 PRÁCTICA MODELO DE PREDICCIÓN DE SUPERVIVENCIA DEL
TITANIC
3.5.1 Lectura de datos
3.5.2 Exploración y tratamiento de datos
3.5.3 Propiedades gráficas (Titanic)
3.5.4 Estadísticas descriptivas (Titanic)
3.5.5 Partición de datos (Titanic)
3.5.6 Entrenamiento del modelo de decisión
3.5.7 Aplicar el modelo
3.5.8 Puntuar
3.5.9 Flujo de trabajo
3.5.10 Práctica de resultados: modelo de predicción supervivencia del titanic
SOLUCIÓN A LAS PRÁCTICAS Y EJERCICIOS PROPUESTOS
CAPÍTULO 1. PRÁCTICAS CON POWER BI DESKTOP
1.2 Práctica: Análisis de datos financieros
1.3 Práctica: Análisis de una página Web
1.4 Práctica: Combinar datos con Power BI
1.5 Práctica: Creación de medidas propias (Empresa Contoso)
1.6 Práctica: Análisis de datos de una supertienda
CAPÍTULO 2. PRÁCTICAS CON R - RSTUDIO
2.4 Práctica: Estadística descriptiva de una variable cuantitativa continua
2.5 Práctica: Regresión lineal
2.6 Práctica: Árboles de decisión
2.7 Práctica: Minería de texto
CAPÍTULO 3. PRÁCTICAS CON KNIME
3.3.3 Síntesis del análisis de datos del sistema CRM
3.4 Modelo de entrenamiento de clasificación de datos
3.5. Práctica de resultados modelo de predicción de supervivencia del titanic..285
REFERENCIAS
MATERIAL ADICIONAL
Este libro, condensa y adapta distintas prácticas y ejemplos de las herramientas más utilizadas en el análisis de datos: Power BI Desktop, R RStudio y Knime.
El capítulo 1, Prácticas con Power BI, se describe la conexión a datos, creación de un modelo de datos, creación de objetos visuales, trabajo con informes. Todo ello acompañado de prácticas de análisis de datos financieros, análisis de una página web (Eurocopa), combinar datos, creación de medidas propias y análisis de datos de una supertienda.
El capítulo 2, Prácticas con R y RStudio, se describe el entorno de desarrollo y las características generales, donde se destaca: tipos de datos, carga de datos y prácticas de análisis de datos como: estadística descriptiva de una variable cuantitativa continua, regresión lineal, árboles de decisión y minería de texto.
El capítulo 3, Prácticas con Knime, se inicia con la introducción a Knime Analytics donde se destaca: ventanas, nodos y flujo de trabajo y creación de un proyecto Knime. Se termina el capítulo con la descripción de las diferentes prácticas que involucran: ciencia de datos, modelo de entrenamiento de clasificación de datos y modelo de predicción de supervivencia del Titanic. Finalmente, se presenta la solución de todos los ejercicios planteados en las prácticas desarrolladas.